
Efficiency and power in genetic association studies
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We investigated selection and analysis of tag SNPs for genome-wide association studies by specifically examining the relationship
between investment in genotyping and statistical power. Do pairwise or multimarker methods maximize efficiency and power? To
what extent is power compromised when tags are selected from an incomplete resource such as HapMap? We addressed these
questions using genotype data from the HapMap ENCODE project, association studies simulated under a realistic disease model,
and empirical correction for multiple hypothesis testing. We demonstrate a haplotype-based tagging method that uniformly
outperforms single-marker tests and methods for prioritization that markedly increase tagging efficiency. Examining all observed
haplotypes for association, rather than just those that are proxies for known SNPs, increases power to detect rare causal alleles,
at the cost of reduced power to detect common causal alleles. Power is robust to the completeness of the reference panel
from which tags are selected. These findings have implications for prioritizing tag SNPs and interpreting association studies.

Complete genome sequencing offers a comprehensive approach to test
all human genetic variation for association to clinical traits. Although
routine sequencing of thousands of genomes remains impractical, it
has become possible to test systematically most human heterozygosity
that is due to common genetic variations1,2. Correlations among
nearby variants (linkage disequilibrium, LD) can improve the cost-
effectiveness of such studies3–5, guiding selection of informative ‘tag’
SNPs6 and providing information about nearby variants not geno-
typed. The International HapMap Project is a resource that provides
empirical genome-wide data to support such analyses7–9.

Given practical limitations on genotyping, investigators are forced
to make several practical decisions: (i) selecting and prioritizing tag
SNPs10–19, (ii) deciding which tests of association to use20–26 and (iii)
evaluating statistical significance of putative findings27–29 (Box 1).
Genotyping a higher density of tag SNPs increases the fraction of sites
captured through LD30, but the quantitative relationship between
additional genotyping and increased power in association studies is
not well described. The use of multimarker haplotypes shifts this
relationship toward greater efficiency31 but has certain drawbacks: if
haplotype testing increases the degrees of freedom or number of tests
in statistical analysis, it may decrease, rather than increase, overall
power24. Many studies will rely on data from the International
HapMap Project, which is an extensive but incomplete inventory of
common genetic variation8. Therefore, it is crucial to understand how
tags selected from HapMap compare in power to those selected from a
more comprehensive resource.

We set out to study the trade-offs between efficiency and power for
different tagging and testing approaches. Because expected power in
disease association studies is the most relevant measure of merit (e.g.,
compared with the distribution of correlation coefficients (r2) between
tag SNPs and untyped variants), we explicitly modeled disease
association studies. Second, because varying both the density of tag
SNPs and the statistical testing procedure can influence the number of
statistical tests (and many of these tests are not independent), we
empirically assessed significance thresholds. Finally, because results
depend intimately on the true properties of human LD, which are not
necessarily well-modeled by population-genetic simulations32, we
carried out these evaluations using empirical (rather than simulated)
human genotype data.

RESULTS
Disease association studies using empirical genotype data
We started by creating case-control panels using empirical genotype
data from the HapMap ENCODE project8. Ten 500-kb ENCODE
regions were resequenced in 48 individuals, and all discovered SNPs
(as well as any others in dbSNP) were genotyped in 269 HapMap
samples: 30 parent-offspring trios from the Yoruba people in Ibadan,
Nigeria (YRI); 30 parent-offspring trios from Utah, USA, with north-
ern and western European ancestry (from the Centre d’Etude du
Polymorphisme Humain; CEU); 45 unrelated Han Chinese people
from Beijing, China (CHB); and 44 unrelated Japanese people from
Tokyo, Japan (JPT). This data set contains 16,970 SNPs (one every
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B300 bp) with an allele frequency distribution that is almost complete
for common alleles; it is available from the HapMap project website.

To simulate a case-control panel, we designated one SNP from this
data set to be ‘causal’. We calculated an effect size such that if this SNP
were directly tested in 1,000 cases and 1,000 controls, power would be
95% to achieve a nominal P value of 0.01. Because our concern was
the relative effect on power of tagging and analysis strategies (rather
than absolute power), and to make it possible to average results over
all putative causal alleles, we fixed the absolute power for each putative
causal SNP. Constant power requires minor allele frequency to
be inversely correlated to penetrance: in this model, rare alleles are
assigned a stronger effect than common alleles (Supplementary Fig. 1
online). This approach avoids consideration of uninformative scenar-
ios where power is uniformly high (such that any tagging strategy
might suffice) or nonexistent (such that tagging is irrelevant).

To simulate the case-control studies, we drew chromosomes span-
ning each 500-kb region at random from the phased empirical data,
conditional on the genotype and effect size at the causal SNP. We
repeated this step until there were 1,000 cases and 1,000 controls in
each panel and then created 25 such panels for each causal SNP.
Finally, we repeated the entire process over all SNPs in the data,
generating a large collection of case-control panels in which each SNP
has an equal chance of being causal.

We selected tag SNPs and defined statistical tests from a reference
panel under a variety of scenarios. We evaluated association for each
statistical test using standard 2 � 2 w2 comparisons of cases and
controls. The significance threshold for declaring association was
based on the empirical null distribution (Supplementary Note
online): the tags and statistical tests selected in each scenario were
examined in a set of null panels (in which no SNP is causal), with the
maximum w2 value exceeded in 1% of null panels chosen as the
threshold to declare a positive result (region-wide corrected P value of
0.01). We report the proportion of case-control panels in which an
association was detected, averaged over all putative causal SNPs and
over all ENCODE regions.

Capturing all sites observed in a complete reference panel
We began by examining the relationship between the number of SNPs
genotyped and statistical power in the best-case scenario: where
complete resequencing has been done in a reference panel, such that
all putative causal alleles have been observed. We first examined only
common alleles: we selected tags to capture alleles with frequency
Z5% in the reference panel and limited the set of putative causal
alleles in the simulations to those with a frequency Z5%.
Figure 1 shows the distribution of the maximum w2 values in all

null panels and in all causal panels. Nominal power is set to 95% if
each causal site is examined as a single test, but the average power after
testing all common sites in each 500-kb region falls to 60% (YRI) and
68% (CEU and CHB+JPT). This decline simply represents the power
loss resulting from an empirical correction for having tested many
hundreds of SNPs in each 500-kb region; the decline in power tracks
with the extent of LD in each set of DNA samples.

The simplest and most conservative approach to selecting tag SNPs
is to select a subset of nonredundant SNPs from the reference panel
such that every common allele either is directly genotyped or has a
perfect proxy (r2 ¼ 1.0) among the tags. The reduction in the number
of genotypes required (compared with testing all common SNPs
directly) was 46% (YRI) and 65% (CEU and CHB+JPT; Fig. 2).
Because all sites are perfectly captured, relative power remained at
100% compared with testing all common causal alleles directly.
(Hereafter, we report the ‘relative power’ of each tagging strategy:
power under a given tagging-testing strategy compared with that
obtained by testing all common sites directly.)

We next asked whether multimarker (haplotype) tests could
improve the genotyping efficiency, as previously proposed10,31.
Because we were concerned about loss of power due to the introduc-
tion of additional statistical tests, we developed a strategy in which an
identical set of tests of association with one degree of freedom (d.f.)
are done but we allow a haplotype of tags to serve as surrogate for an
untyped SNP (rather than restricting statistical tests to genotypes of
single tags). In other words, if a specific multimarker combination
(i.e., haplotype of tag SNPs) can serve as an effective proxy for some
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BOX 1 TERMINOLOGY

Variants to be tested for association to phenotype are termed

putative causal alleles.

The hypothetical relationship between alleles and phenotypes

is termed the genetic model.

Genotype data used to guide experimental design (selection of tag

SNPs and definition of statistical tests to be done) is termed the

reference panel; HapMap is one such panel.

Tags are the subset of variants genotyped in a disease study. SNPs

that are not typed in the study but whose effect can be studied

through LD with a tag are termed proxies. A tag with perfect

correlation (r2 ¼ 1) to an untyped putative causal allele is termed a

perfect proxy.

The allelic hypotheses examined for association to disease

(based on genotypes of the tags) are termed tests. A test that is

simply the allele of a tag is termed a single-marker test. Tests based

on combinations of tags are termed multimarker tests. A specified

multimarker test examines a particular allelic combination

(a haplotype) of multiple tags based on its observed correlation

to a putative causal (untyped) allele in the reference panel. An

exhaustive multimarker test searches over many or all allelic

combinations of tags in the hope of finding a test that captures a

hitherto unseen putative causal allele.

Figure 1 Distributions of the test statistic in a typical ENCODE region.

Maximum w2 statistics for association to disease status are evaluated in

the simulated case-control panels (solid line) and random null panels

(dotted line). The study-wide significance threshold (vertical gray line) is

empirically determined such that the maximum w2 test statistic exceeds
it in 1% of the null panels (region-wide P ¼ 0.01). True associations in

the simulated case-control panels with a test statistic below the threshold

are rejected (false negatives). Owing to the empirical multiple testing

correction, absolute power to detect an association drops from 95%

(nominal) to 60% (YRI) and 68% (CEU and CHB+JPT), averaged over all

ten ENCODE regions.
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putative causal alleles, then these alleles need not be typed as tag SNPs
(or tested as single markers). In this method, each single tag, as well as
each specific haplotype defined above, is tested for association. To
avoid overfitting, we required the tags in a specified multimarker test
themselves to be in strong LD (lod 4 3.0) with the allele predicted.

Using this tagging procedure in simulated disease association
studies as above, we computed power and the number of tag SNPs
required. In comparison to pairwise tagging, relative power remained
unchanged at 100%, but the number of tag SNPs was reduced by
another 26% (YRI), 30% (CEU) and 28% (CHB+JPT; Fig. 2). There-
fore, by simply removing redundancy from the complete set of SNPs
in an efficient haplotype-based manner, we reduced the genotyping
burden by 60–77% while maintaining complete power.

Increasing efficiency by relaxing thresholds for tag SNP selection
The tagging strategies described above require that tags be selected to
capture perfectly every common site observed in the reference panel.
To the extent that this is unaffordable, investigators may be forced to
reduce the density of genotyping by relaxing the criteria for tag
selection. We examined two possibilities: (i) capturing all common
alleles, but at a less stringent r2 threshold14, or (ii) capturing only a
subset of sites, each at a high r2 threshold.

Relaxing the threshold from perfect correlation to a slightly lower
level (r2

Z 0.8) substantially decreased the number of tags required (a
further decrease of 36% in YRI, 47% in CEU and 55% in CHB+JPT),
yet relative power remained almost complete at 96%. This approach
can straightforwardly be combined with the multimarker method
described above, resulting in even greater efficiency (Fig. 3a). Even
lower r2 thresholds resulted in less and less genotyping, but relative
power began to decline rapidly. Lowering the r2 threshold too far
(while still requiring that all sites be captured at or above this
threshold) can result in performance no better than that of a random
collection of SNPs (Fig. 3a).

An alternative approach is to rank potential tags according
to the number of other SNPs for which they can act as a proxy
and then to type the SNPs in this priority order (we call this the
‘best N’ method). This approach is substantially more efficient
than lowering the r2 threshold: for example, choosing a SNP every
10 kb in this manner (only B5% of all common SNPs) pro-
vides relative power of 77% (YRI), 95% (CEU) and 92% (CHB+JPT).
Any such pairwise list can be made more efficient by replacing
single-marker tests with appropriate multimarker haplotypes
(as above), resulting in the most efficient method of those we
examined (Fig. 3a).
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Figure 3 Efficiency and power for various tagging strategies. Relative power to detect associations due to common (Z5%) causal alleles is shown as a

function of the average spacing of tags picked from (a) complete and (b) incomplete (pseudo phase I HapMap) reference panels. Tags are picked using our

multimarker approach by prioritizing best N tags according to number of proxies at r 2 ¼ 1 (solid line) and by lowering the r 2 threshold from 1.0 to 0.8, 0.5

and 0.3 (dashed line). Power is also given for random selection of common SNPs tested as single markers (dotted line). In the top panel, expected power is

shown for a hypothetical scenario in which there is no LD among SNPs and all tests are independent (gray dotted line); the comparison of this line to the

real data shows the gain in efficiency and power offered by the extensive LD in the human genome.
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In summary, if a complete reference panel is available, multimarker
haplotype tests are more efficient than pairwise tests, and prioritizing
SNPs on the basis of their LD properties allows impressive reductions
in the genotyping burden while maintaining excellent power.

Tags selected from an incomplete reference panel
At present, only incomplete reference panels are available genome-
wide8,9. It is therefore important to ask how power and efficiency
decline when tags are selected from an incomplete, rather than
complete, reference panel. To this end, we created a ‘pseudo’ 5-kb
HapMap by thinning the ENCODE data to achieve the spacing and
frequency distribution of phase I HapMap8. We selected tags and
designed tests using this incomplete resource, evaluating performance
in simulated case-control panels where all alleles (not just those from
the incomplete HapMap) were allowed to be causal.

We observed two key changes, both predictable. First, a much
smaller set of tags was selected for genotyping compared with the set
selected when tags were picked using the complete data (Fig. 3b).
Second, a subset of common variants had no
good proxies in the reference panel: 55%
(YRI), 26% (CEU) and 28% (CHB+JPT) of
all common SNPs were not captured at r2

Z

0.8, because they were not observed in the
pseudo HapMap and were not in LD with
any other SNP that was included8.

Given these characteristics, it is noteworthy
that power was largely undiminished relative

to testing tags chosen from a reference panel of all common sites: tags
selected from the pseudo phase I HapMap (pairwise r2

Z 0.8)
provided 91% relative power in CEU (73% in YRI and 89% in
CHB+JPT), despite requiring less than one-half of the tags required
when tagging from complete data. In absolute terms, a set of best N
tags every 10 kb (on average) selected from complete data provided
95% relative power in CEU (77% in YRI and 92% in CHB+JPT),
whereas the same density of tags selected from the pseudo phase I
HapMap retained 88% power in CEU (64% in YRI and 85% in
CHB+JPT).

We also asked whether the power provided by different tagging
strategies was similar when using incomplete versus complete refer-
ence panels. Whereas the best N strategy outperformed the strategy of
lowering the r2 threshold in complete data, when tagging from the
pseudo HapMap (Fig. 3b), the two methods performed similarly,
although the strategy of lowering the r2 threshold seemed to have a
slight edge.

The impact of LD on tag SNP selection and power
The relatively high power obtained by selecting tags from incomplete
reference panels or by using the best N method to trim a complete tag
set was somewhat unexpected, because in both cases, the tags did not
capture a substantial proportion of putative causal alleles. But the high
power is partially explained by the highly variable extent of LD in the
human genome and the effects of LD on the power obtained from
each statistical test.
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Figure 5 Effect of exhaustive haplotype tests

on statistical power. Relative power is given for

common (Z5%) and less common (1�5%)

causal alleles for two scenarios: (a) when a

nonredundant set of SNPs are used as tags from

complete reference panels and (b) when tag

SNPs (minor allele frequency Z5%) are

randomly selected every 10 kb from pseudo
phase I HapMap (as in ref. 25). Power is

computed when each tag SNP is tested for

association using single-marker tests (–) and

when exhaustive haplotype tests are done on

the same data (+). Exhaustive haplotype tests

increase power for less common alleles but at

a cost of reduced power for common alleles.

Figure 4 Effect of tagging from an incomplete reference panel on testing

burden and power. (a) Null (dotted lines) and causal (solid lines)

distributions of the test statistic are plotted for two scenarios: tagging from

complete (blue) and incomplete (red) reference panels. The causal

distribution as well as the region-wide significance threshold are reduced

concomitantly when tags are picked from the pseudo phase I HapMap,

thereby preserving power. (b) Distribution of region-wide power for individual

causal alleles is plotted for two scenarios: tagging from complete (blue) and

incomplete (red) reference panels. Nominal power is centered around 95%

(dotted gray line). Overall power is comparable in both scenarios.
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The completeness of the reference panel, and the strategy for
tagging and testing, affects not only the distribution of the test statistic
for causal SNPs but also the significance thresholds under the null
distribution. We examined the distribution of the maximum w2 test
statistic under two scenarios: tags selected from complete and from
incomplete reference panels (Fig. 4a). When tags were selected from
incomplete data, the causal distribution was shifted toward lower
w2 values, as expected, because some causal SNPs are not well
captured. But in addition, the null distribution shifted to lower
thresholds owing to a marked reduction in the number of tests
done. Although some alleles were poorly captured and not discovered
(most notably those alleles with few proxies; Supplementary Fig. 2
online), the power for most putative causal alleles remained high
owing to inclusion of a good proxy for most causal alleles and a less
stringent significance threshold for declaring association. Although
overall power was similar in both scenarios (Fig. 4b), the mix of causal
alleles discovered shifted toward those in LD with many other SNPs, at
the cost of discoveries due to SNPs with few proxies.

Put another way, tests that capture many putative causal alleles add
the same amount to the multiple testing burden as do independent
tests that capture only a single site. The chance of encountering a true
association, however, is much greater when many putative causal
alleles are examined per test. The single best tag (with most observed
proxies) from the incomplete reference panel captures only a small
fraction of all sites, but does so at the cost of only a single hypothesis
test, and results in relative power that is 15–25% of that obtained by
testing all common sites in the region (data not shown). Adding more
tags captures a larger fraction of putative causal alleles, and power
rises. But the yield of each additional test falls monotonically as it
examines a smaller slice of the prior distribution than the test before it.

This simple idea underlies the best N method for tag SNP selection,
as it preferentially excludes those SNPs that have no proxies and that
offer the least marginal power per hypothesis test. Similarly, an
incomplete reference panel (HapMap) has also preferentially (but
imperfectly) dropped SNPs with no proxies; such SNPs can be tested
for association only if they are included on the HapMap, whereas
SNPs with many proxies will almost always be tested, as only one of
the proxies needs to be present on HapMap. The best N approach
underperforms at sparser densities (in complete and incomplete data;
Fig. 3), however, because the set of SNPs with no proxies has been
depleted and, therefore, the dropped tags carry with them information
about an increasingly larger number of putative causal alleles.

The best N method suffers further when applied to incomplete
reference panels, because from such data it is not possible to
distinguish which SNPs truly have no proxies and which have proxies
that have not yet been observed. Empirically, B50% of the SNPs on
the phase I HapMap have no observed proxies (at r2 ¼ 1)8 and are
therefore preferentially dropped using the best N method. Of these, a
large number have proxies in the complete data, but it is impossible to
tell which these are without more complete data. Therefore, where
complete data is available (as in selected candidate genes33), and as
denser versions of HapMap become available (such as the pending
phase II), the utility of the best N method should increase, particularly
for choosing marker densities of more than one SNP per 10 kb.

Exhaustive haplotype tests to detect less common alleles
The above analyses considered only scenarios in which the causal
alleles are common. But less common SNPs also influence disease and
might be discovered incidentally even if tags are selected and tests
designed to capture only common variation. We therefore examined
power under the scenario that the frequency of the causal allele is

1–5% with the same 95% nominal power (and thus a larger magni-
tude of effect). Although power for alleles with this frequency was
lower than that for common alleles, it remained substantial: relative
power was 29% (YRI), 23% (CEU) and 15% (CHB+JPT).

Exhaustive haplotype testing has been suggested as an approach to
capture alleles not observed in the reference panel. This approach tests
many or all local haplotypes in the hope that one or more might
correspond to an unobserved causal allele25. But this potential benefit
comes at the cost of carrying out numerous additional statistical tests,
many of which do not correspond to any actual variant.

We first evaluated a scenario in which exhaustive haplotype testing
was done on tags picked to capture all common alleles in the complete
reference panel (r2 ¼ 1.0) but the universe of causal alleles was limited
to those with frequency 1–5%. As described previously25, exhaustive
haplotype testing increased relative power: 59% (YRI), 58% (CEU)
and 45% (CHB+JPT; Fig. 5a). Therefore, for less common alleles, the
benefit of finding a better proxy outweighed the cost of multiple
comparisons and resulted in substantial power.

In contrast, when the causal alleles were common (Z5%), relative
power was reduced by exhaustive haplotype testing to B85%
(Fig. 5a). This penalty was not unexpected: the testing burden was
increased with no possibility of true benefit, because all putative causal
alleles were already captured.

It seemed more likely that exhaustive haplotype tests might improve
power for tags selected from incomplete data or at random. When we
selected tags from the incomplete (pseudo phase I HapMap) reference
panel or at random at lower densities (one common SNP per 10 kb or
30 kb), exhaustive haplotype tests continued to boost power for less
common alleles but did not improve power for common alleles
(Fig. 5b and Supplementary Fig. 3 online). We conclude that in
empirical genotype data the benefit of exhaustive haplotype tests is
real but primarily limited to lower frequency alleles.

Software
The optimal trade-off between power and efficiency depends on the
resources available and assumed characteristics of allele frequency and
LD for putative causal alleles. Because investigators will want to make
their own decisions, we implemented these methods in the web server
Tagger and the program Haploview34. The software enables investi-
gators to select tags from empirical data, using single-marker or
specified multimarker tests; to rank-order the tags according to
proxy count; and to record the statistical tests to be done on these
tags (single-marker tests, specified multimarker tests or exhaustive
tests). Haploview can carry out association tests based on these
selections, including permutation testing. The software also makes it
possible to force in or exclude specific sets of SNPs as tags identified
on the basis of other considerations, such as the existence of previous
data or a working assay; to incorporate genotyping platform design
scores to pick tags on the basis of the likelihood of success; to evaluate
the coverage with respect to a reference panel (based on r2) for an
existing set of user-specified tags; and to derive specified multimarker
tests from a static list of tags to extend coverage with respect to a
reference panel (such as HapMap).

DISCUSSION
From our analyses we draw several conclusions. First, specified multi-
marker tests substantially increase tagging efficiency relative to single-
marker approaches, without loss of power. Second, when selecting
SNPs from very dense reference panels, a method such as the best N
strategy, which ranks SNPs according to the number of proxies they
have, allows marked reductions in genotyping with limited loss of
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power, substantially outperforming a method based on relaxing r2

thresholds. Third, sparser sets of tags selected from a pseudo phase I
HapMap are almost as powerful as equally sized sets chosen from
complete reference panels. Fourth, exhaustive multimarker tests
improve power for less common causal alleles but are neutral or
reduce power when the causal SNP is common. These relationships
hold for each of the different population samples studied by HapMap,
although the number and performance of tags varies, as expected,
according to the general extent of LD in each sample.

It has become common practice to select tags until a high threshold
for the correlation coefficient (often r2

Z 0.8) is exceeded for all
observed sites14. The use of multimarker tests and prioritization of
tags allows for substantial cost reduction with little loss of power.
Whether it is worthwhile to take advantage of this trade-off of
efficiency for power will be determined by each investigator, depend-
ing on the resources available for genotyping, the sample size and
power, the perceived cost of a false negative study and the anticipated
value of a true positive result.

Whether exhaustive haplotype testing is justified depends on
assumptions about the relative balance of rare and common causal
variants and the completeness of the reference panel from which tags
are picked. Given the current phase I HapMap, there seems to be little
cost and evident gain in using the exhaustive haplotype test25. As
reference panels become more complete (particularly for less common
alleles), however, the balance may shift toward the specified haplotype-
based method that limits tests to only those that predict the increas-
ingly complete inventory of putative causal sites.

A limitation of our study is that we did not evaluate whether tags
and tests defined in the HapMap samples are transferable across
populations. In preliminary analyses, we observed minimal loss of
power when tags and tests were transferred to various disease studies
(P.I.W.d.B., N. Burtt, R. Graham, M.J.D. & D.A., unpublished results),
and similar findings have been reported elsewhere11,35,36. Much more
work is needed on this topic, and the answer will probably vary
depending on the population studied.

Perhaps the most important observation in this study is that SNPs
that capture many putative causal alleles have different statistical
properties than tests capturing only a single site (at least under the
frequentist approach to setting statistical thresholds). An implication
of this is that rather than using a universal significance threshold for
all tests, power may be increased by a Bayesian approach in which a
prior for each test is established as a function of the number of sites
captured, integrated over each site’s individual likelihood of being
causal. Incorporating such ideas into study design may lead to greater
efficiency in use of genotyping resources and maximize the yield of
discoveries for a given investment in such research.

METHODS
Data sets. We used phased genotype data for ten chromosomal regions, each

spanning 500 kb, generated as part of the HapMap ENCODE project. This data

set (release 16c.1) was created by genotyping all variable sites observed after

resequencing 48 unrelated individuals (as well as any additional SNPs in

dbSNP) in the 269 DNA samples used in HapMap (YRI, CEU, CHB and

JPT). We combined the CHB and JPT samples for all analyses, yielding three

analysis panels: YRI (120 unrelated chromosomes), CEU (120 unrelated

chromosomes) and CHB+JPT (178 chromosomes).

Genetic model and simulation of case-control panels. From the ENCODE

data, we generated almost 10 million case-control panels to evaluate study-wide

power as a function of a number of tagging and testing strategies. We used a

multiplicative disease model in which we nominated all nonsingleton SNPs in

the complete data to be causal, one by one, reflecting a uniform prior

probability of any of the SNPs contributing to the phenotype. For each causal

SNP, we made 250 replicate case-control panels by sampling with replacement

from the ENCODE chromosomes to give 1,000 cases and 1,000 controls (4,000

chromosomes in total). The frequency of the causal allele (minor or major

chosen at random) in the cases is determined by the genotype relative risk,

calibrated so that we obtain 95% nominal power to detect an association with

the 1 d.f. w2 test (at P o 0.01), if that causal SNP was tested directly

(Supplementary Fig. 1). Thus, all causal SNPs are assigned to have equal

nominal power. We also created control-control (null) panels by randomly

sampling from the ENCODE chromosomes; we used these to define statistical

significance thresholds (Supplementary Note).

Reference panels for tag SNP selection. We constructed reference panels at

two densities: ‘complete’ reference panels using all ENCODE data (120 unique

chromosomes for YRI and CEU; 178 for CHB+JPT), where complete refers to

the ascertainment of common (Z5%) variation, and ‘incomplete’ reference

panels, made by thinning the data as follows. To mimic the ascertainment

scheme of the 5-kb HapMap (phase I), we randomly picked SNPs present in

dbSNP build 121 (excluding ‘non-rs’ SNPs in HapMap release 16a) for every

5-kb bin until we picked a common (minor allele frequency Z 5%) SNP

(allowing up to three attempts per bin).

Selection of tag SNPs and definition of tests. We developed a computer

program called Tagger for selecting tag SNPs and defining tests from a reference

panel. Tags can be picked in different ways: (i) greedy pairwise tagging14, in

which alleles of interest are captured by single-marker tests at the prescribed r2;

(ii) prioritizing tags (best N) by the number of alleles for which they can serve

as a proxy at a given r2. In addition, Tagger can carry out an aggressive search to

attempt to replace each tag with a specific multimarker predictor (on the basis

of the remaining tags) to improve efficiency. This predictor will be accepted

only if it can capture the alleles originally captured by that discarded tag at the

required r2; otherwise, that tag is considered indispensable. As a result of this

‘peel back’ approach, we end up with fewer tags that specify a similar (identical

if r2 ¼ 1) set of 1 d.f. statistical tests as the original set of single-marker tests.

In this study, we allow up to three tags to form a specified multimarker test

and limit the search to evaluate at most 10,000 allelic predictors. The maxi-

mum allowed physical distance between an allele and a tag was 200 kb. To

minimize risk of overfitting, tags in a specified multimarker test are forced to be

in strong LD (here defined as lod score 4 3) with one another and with the

predicted allele.

Region-wide test statistic and power calculations. For every explored tagging

and testing scenario, we generated a set of 1 d.f. w2 allelic tests. Our region-wide

test statistic for association is the maximum of these w2 values. The null

distribution of the test statistic was generated by carrying out the same allelic

tests in the random null panels and used to derive the significance threshold

corresponding to a region-wide P ¼ 0.01 (a brief discussion on how this

compares with explicit permutation testing is presented in Supplementary

Note). The absolute power to detect association is computed as the fraction of

the case-control panels in which the maximal w2 test statistic exceeds the

significance threshold (when a true association is declared). To normalize

results for different strategies, we report power (for both common and rare

causal alleles) relative to the power to detect common causal alleles (minor

allele frequency Z 5%) when these are tested directly, averaged over all ten

ENCODE regions.

Exhaustive haplotype tests. We carried out exhaustive haplotype tests by

enumerating all haplotypes corresponding to adjacent combinations of tags of

all sliding windows of a maximum span. We applied this to pairwise tags

(selected at r2 ¼1 from complete panel) forming haplotypes of up to 25 kb, and

17 and 50 random common markers per region (30 kb and 10 kb average

spacing, respectively) from incomplete reference panels forming haplotypes of

up to 100 kb. Allelic w2 tests were done on these haplotypes as described above.

URLs. The HapMap project website is http://www.hapmap.org/. Tagger is

available at http://www.broad.mit.edu/mpg/tagger/, and Haploview is available

at http://www.broad.mit.edu/mpg/haploview/. The HapMap ENCODE project

website is http://www.hapmap.org/downloads/encode1.html.en.
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Note: Supplementary information is available on the Nature Genetics website.
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